
Journal of Material Science and Mechanical Engineering (JMSME)
p-ISSN: 2393-9095; e-ISSN: 2393-9109; Volume 3, Issue 3; April-June, 2016 pp. 254-257
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

A Practical Approach to the use of Local Variables
in CNC Machines Programming for

Fanuc Custom Macros
Mohd Asif Hasan

Department of Mechanical Engineering, University Polytechnic, Faculty of Engineering and Technology,
Aligarh Muslim University (AMU), Aligarh - 202002 (India)
E-mail: hasan_in@hotmail.com; asif.hasan.bp@amu.ac.in

Abstract—The capabilities of Computer Numerical Control (CNC)
Machines are well-appreciated but the challenging aspect is
Programming of the CNC Machines. Ever since the advent of CNC
Machines, constant efforts are being made to ease and simplify the
programming methods and procedures of CNC machines. One such
effort is in the direction of development of Macros for repetitive type
of tool motions. Macros are simple part-programs which reside in the
memory of the controller and are called using a specific code for the
macro. All sort of canned cycles are basically Macros. Canned cycles
for turning, threading, stock removal, drilling, etc. are now-a-days
provided as standard feature available on CNC machines which
simplifies the CNC programming for these operations to a great
extent. However, development of canned cycles or macros, as per the
requirement of the user, requires an in-depth knowledge of Manual
Part Programming (based on G and M codes) and Macros (part-
programs based on Variables). In Fanuc systems, the programming
language or environment available for the development of macros is
known as “Custom Macro B”. As development of Macros is
primarily based on the use of particular type of variables know as
Local Variables, this paper presents a conceptual framework of these
variables for the development of macros in Fanuc’s Custom Macro B
environment.

Keywords: Computer Numerical Control; CNC; CNC
Programming; Macro; Parametric Programming; CNC Variables;
Local Variables; Custom Macro B

1. INTRODUCTION

Computer Numerical Control (CNC) machines are those
machines which are controlled by numbers while making use
of computers for processing the information fed to these
machines. The numbers used for controlling these machines
are actually alpha-numerals and are popularly known as Codes
of CNC Machines. These codes are arranged in a logical
sequence depending on the type and sequence of operations to
be performed on a job. This logical sequence of CNC codes is
known as Programme of Instructions or simply Part Program.
These part programs are fed to the Controller which is the
brain of the CNC machine, for processing and execution of
these instructions. If these part programs are developed by the

operator or human being, then this method of programming
the CNC machines is known as Manual Part Programming.
However, this method of programming the CNC machines is
tedious and bounded by the limitations of human being, but
presently is almost inevitable as CNC machines only
understands this format of G and M codes. But, there are other
methods of programming the CNC machines, like
Conversional programming and programming using
CAD/CAM softwares, which basically helps the human being
or operator of these machines to generate the part program in
this standard format (based on ISO 6983 and others) [1, 2, 9].

Another method of CNC Programming is combining the
Manual Part Programming with the Macros which provides
enormous advantages and ease of programming in many
situations. Macros often serve as a special solution to special
requirements. Although CAD/CAM programming systems
have become very popular and are on the rise, they do not and
cannot always replace macro programming, for various
reasons. Macros are simple part-programs which reside in the
memory of the controller and are called using a specific code
for the macro. All sort of canned cycles are basically Macros
[1, 2, 3].

CNC programming using Macros is referred to as Macro
Programming, Parametric Programming, or simply Macros.
CNC programming using Macros can be compared to any
computer programming language like BASIC, C Language,
and PASCAL. However, this programming language or
feature is available right in the CNC controller and can be
accessed at G code level, which means that it can be combined
with manual programming techniques of CNC machines [4].
As it is like any computer language and thus also possesses
Computer-related features like variables, arithmetic, logic
statements, and looping. Like computer programming
languages, this feature of CNC programming using Macros
also comes in several versions. The most popular is Fanuc’s
Custom Macro B (used by Fanuc and Fanuc-compatible
controls). Others include User Task (from Okuma), Q Routine

A Practical Approach to the use of Local Variables in CNC Machines Programming for Fanuc Custom Macros 255

Journal of Material Science and Mechanical Engineering (JMSME)
p-ISSN: 2393-9095; e-ISSN: 2393-9109; Volume 3, Issue 3; April-June, 2016

(from Sodick), and Advanced Programming Language [APL]
(from G& L). In addition to computer related features, Custom
Macro B could also be used for extensive CNC related
features which are more commonly related to the utilities such
as part counters, tool life managers, etc. and driving accessory
devices such as probes, in-process and post process gauging
systems, etc. [5,6,7]. A Part Program developed using Macros
for one control model may not work with another control
model. However, the logic and general approach discussed
here can be adapted for various models of Fanuc controller
and also for control systems other than Fanuc.

2. MACRO PROGRAMS AND SUB-PROGRAMS

In simple words, Macro programming is programming the
CNC machines in standard G and M code format while
making use of the capabilities of the controller in making
arithmetic calculations, feeding formulae, storing, reading and
assigning values to the system variables (with certain
restrictions) as well as Local and Common variables, etc.
These variables could only be numbers with associated fixed
function and functionally are just like algebra variables. They
can be assigned values, and when referred give back the last
value they were assigned. [1, 2].

Development of Macro programs requires the deep knowledge
of the Preparatory Commands (G-codes) and the
Miscellaneous Functions (M-codes) in a part program. A
macro program developed using Custom Macro B or else
resembles a standard CNC program to a certain extent, but
includes many features not found in regular programming.
Essentially, a macro program is structured as a regular
subprogram. It is stored under its own program number (O-),
and it is called by the main program or by another macro,
using a G-code (typically G65). However, in a very simple
form, macro features can be used in a single program as well,
with out the macro call command [3].

Use of macros becomes essential in some areas of CNC
programming irrespective of the method of programming,
whether a manual method or a CAD/CAM method is used.
Some of the areas where CNC programming using Macros (or
simply Macro Programming) is indispensable or at least offer
an edge over other methods are Part Programming for Family
of Parts, developing Special G and M codes, Canned Cycles
and Complex tool motions, Offset Control, Probing and
Gauging.

Although, Subprograms are the first logical step into the
macro development, the major difference between the two
unique programming methods is the flexibility macros offer.
Over all, following are the three agenda items that are the
most significant in programming macros: Variable data input,
Mathematical functions and calculations, and Storage and
retrieval of current machine values. Only the first agenda item
i.e. variable data input is discussed in this paper [3].

3. RELEVANCE OF VARIABLES IN MACRO

The most noticeable feature of Macros is the use of Variables
for storing numerical values. A variable is a mathematical
quantity that can assume any value within its allowed range
and format. The word variable means change or changeable.
As the data that may change is stored in the variables forms
the basis of flexibility in Macros. In macros, variables can be
used instead of real numerical values and they can be treated
like algebraic variables for various mathematical operations,
for example, by adding two variables together, to get yet
another value.

The syntax for a variable is the pound sign followed by a
number which may be of as many digits as the machine’s
controller supports to identify the variable. For example, it
may be written "#1 = 10.0" to assign the value "10.0" to the
variable "#1". These variables are of great use when you might
want to change a value of these variables in different
situations resulting in all other values based on these variables
will be updated on its own. This feature of Variables add
flexibility to the macro program but also benefit from other
features, such as input data integrity, allowable range
checking, etc.

The basic rules governing the declaration of variables is that a
variable must be defined first, and only then it can be used in a
program or a macro, for example, #5 = 20 indicates that the
variable number 5 is assigned or defined with a Value of 20.
Variables can also be defined by using an expression, where
the expression is typically a mathematical formula or a general
calculation [3, 10]. Expressions must be enclosed in square
brackets, for example:

#7= #7 * [#5 + #6]

where the brackets force calculation of #5+#6 to be performed
first, before being multiplied by #7.

Any complex calculations can be nested within square
brackets which always follow the standard mathematical
hierarchy relating to the order in which calculations will be
processed. When performing mathematical calculations, the
type of every numerical value is important. In simple terms,
real numbers are typically used for calculations, whereby
integer numbers are used for counting and other applications
that do not require a decimal point. Moreover, to avoid any
chance of error, a variable that is defined in the macro
program body must always be entered with the decimal point
for all dimensional values, such as position locations,
distances, feed rates, or any other definitions that use metric or
English units.

Once a variable is defined, it can also be used by preceding it
with the desired Fanuc program related address (character),
which is a capital letter of the alphabet, such as F, S, G, M,
etc.

Mohd Asif Hasan

Journal of Material Science and Mechanical Engineering (JMSME)
p-ISSN: 2393-9095; e-ISSN: 2393-9109; Volume 3, Issue 3; April-June, 2016

256

Variables in Custom Macro B are fixed and designed
meticulously to obtain maximum leverage. For a better
understanding of variables, it is important to understand the
various types of variables, their differences and respective
applications. In Custom Macro B, there are the following four
different categories of variables, called the variable types: (a)
NULL variable (#0) (b) LOCAL variables (from #1 to #33) (c)
COMMON or Global variables (from #100 to #149 and from
#500 to #531) and (d) SYSTEM variables (#1000 and up).
However, the emphasis of this paper is on Local Variables.

4. USE OF LOCAL VARIABLES IN MACROS

Local variables are called local as their stored values are only
applicable to the macro in which they are defined and are non-
transferable between macros which sometimes present a
serious challenge to the macro developer.

LOCAL variables are only temporary and are used in a macro
body to hold certain data. When the macro is called, the local
variables are set to their assigned values. When the user macro
is completed and exits (using the miscellaneous function M99
or else), or the control power is turned off, all local variables
are set to null values, i.e. they cease to exist. The local
variables are normally cleared, called Purging, either through
the control panel or a program code. The local variables can
be purged by pressing the control Reset key or external Reset
key or Emergency button. The local variables also get purged
when they encounter Program End code (M30) or Sub-
Program End code (M99). The local variables could also be
purged by equating them with Null Variable (#0) after their
use in the Macro program itself. As it is the Miscellaneous
Codes (M30 or M99) that clears the local variables and not a
jump from one program to another, the feature of Nesting
could be utilized for defining and redefining local variables up
to five times i.e. once in the main program and once for each
macro level up to four levels as only four levels deep macro
nesting is allowed. As after every jump in the nesting of
macros the newly defined local variables take over but the old
set(s) still remains in the memory and takes control when
macro returns back to that level, which needs to be cleared by
making an appropriate use of M30 and M99.

Each local variable is associated with an assigned letter of the
English alphabet which makes value associated with the
alphabet(s) in the macro call argument specified in the main
program be transferred to the respective local variable number
in the body of the macro program. There are two options
available for the use of Local Variables, Assignment List 1,
which has 21 local variables available, and Assignment List 2,
which has 33 local variables available [3, 8]. Following is the
assignment list 1 and assignment list 2 as defined by Fanuc
expressing local variable number to be used in the body of the
macro program and its corresponding Argument Address
(English alphabet with/without numeral as suffix) to be
specified for expressing user supplied values for these local
variables in the argument of the macro call:

Assignment List 1: A (1), B (2), C (3), D (7), E (8), F (9), H
(11), I (4), J (5), K (6), M (13), Q (17), R (18), S (19), T (20),
U (21), V (22), W (23), X (24), Y (25), Z (26).

Assignment List 2: A(1), B (2), C(3), I1 (4), J1(5), K1(6),
I2(7), J2(8), K2(9), I3(10), J3(11), K3(12), I4(13), J4(14),
K4(15), I5(16), J5(17), K5(18), I6(19), J6(20), K6(21), I7(22),
J7(23), K7(24), I8(25), J8(26), K8(27), I9(28), J9(29), K9(30),
I10(31), J10(32), K10(33).

On a careful observation of the Assignment list 1 and
assignment list 2, it can be found that the following 12 local
variables are missing from assignment list 1: #10, #12, #14,
#15, #16, #27, #28, #29, #30, #31, #32, #33. But, while using
assignment list 1, these 12 variables can also be defined
internally as local variables within the macro body only. The
difference between these 12 variables and the 21 variables of
the assignment list 1 is that these 12 variables are not tied up
to a letter address. On a further careful observation of both the
assignment lists, it can be found that the following five
alphabets are missing: G, N, O, P, L. These five are restricted
alphabets and cannot be assigned any value for any purpose as
G is used to address Preparatory Commands, N for Block
Number, O for Program Number, P for Program Number Call
and L for Number of Repetitions of the macros, subprograms
or canned cycles. Of the five, only the letter G can be used for
a special purpose, such as a definition of a new G-code.

The following illustrative sample main program and macro
will clarify the use of Local Variables from the Assignment
List 1:

O1234 (MAIN PROGRAM)

N1 G21 G90

N2 ….

N3 ….

……….

N10 G65 P8080 X 10.0 Y20.0 Z40.0

N11 ….

……….

N40 M30

%

O 8080 (MACRO)

N1 ….

N7 G00 X#24 Y#25 Z#26

N8 ….

N20 M99

%

A Practical Approach to the use of Local Variables in CNC Machines Programming for Fanuc Custom Macros 257

Journal of Material Science and Mechanical Engineering (JMSME)
p-ISSN: 2393-9095; e-ISSN: 2393-9109; Volume 3, Issue 3; April-June, 2016

In the sample main program, a macro call has been given
using G65 code to the macro saved with number 8080. The
arguments of the macro are X, Y and Z with user specified
values of 10.0, 20.0 and 40.0 respectively. These user supplied
values of X, Y and Z shall be transferred in macro (O8080) to
the corresponding local variable numbers of X, Y and Z which
are #24, #25 and #26 respectively.

In the assignment list 2, the suffix of each set of I-J-K
specifies the assignment order for the argument set defined in
G65 macro call but the order has to be followed very strictly
and carefully, for example, in G65 macro call the first
mentioned I represents variable #4, the second I represents #7,
the third I represents #10, and so on and accordingly for J and
K. It is because of this order confusion of I-J-K set that
assignment list 2 is rarely used.

5. DISCUSSION

In order to make efficient and effective use of CNC machines,
knowledge of the development of macros is a must. As macros
are heavily dependent on the use of variables, the first step
towards the development of macros is to understand the
structure of Variables. In this paper, the structure of Variables
is discussed in the Fanuc’s “Custom Macro B” environment.
Moreover, a conceptual framework has been developed for a
particular type of variables known as Local Variables which
are primarily used for the development of Macros. Unless the
features, capabilities and limitations of these Local Variables
are well understood, an efficient and highly potential macro
can not be developed. Thus, this paper also focussed on the
features, capabilities as well as limitations of these Local

Variables. The future research direction which is also the
limitation of this paper could be the practical implementation
of this approach for the development of macros for required
tool motions.

REFERENCES

[1] Hasan, M.A. (2015), “Computer Numerical Control Machines:
An Account of Programming Methods and Techniques”, Journal
of Material Science and Mechanical Engineering (JMSME), Vol.
2, No. 12, pp. 14-17.

[2] Hasan, M.A. (2015), “Computer Numerical Control Machines:
An Introduction to Parametric Programming using Custom-
Macro B”, Journal of Basic and Applied Engineering Research,
Vol. 2, No. 18, pp. 1566-1569.

[3] Smid, P. (2005), “Fanuc CNC Custom Macros”, Industrial
Press, Inc., 200 Madison Avenue, New York, NY, USA.

[4] Djassemi, M. (1998), “A Parametric Programming Technique
For Efficient CNC Machining Operations” Computers and
Industrial Engineering, Vol. 35, No. 1-2, pp. 33-36.

[5] Lynch, M., “Modern Machine Shop Magazine”,
www.mmsonline.com

[6] CNC Concepts, Inc., www.cncci.com
[7] www.cnccookbook.com
[8] http://www.machinetoolhelp.com/Applications/macro/macro_va

riables.html
[9] Adithan, M. and Pabla, B.S. (2007), “CNC Machines”, New

Age International (P) Limited, Publishers, New Delhi.
[10] Nikiel, G. (2007), “Computer-Aided CNC Programming for the

Machining of Non-Typical Parts”, Advances in Manufacturing
Science and Technology, Vol. 31, No. 4, pp. 21-36.

